Obesity is a heterogeneous construct that, despite multiple and diverse attempts, has been difficult to treat. One conceptualization gaining media and research attention in recent years is that foods, particularly hyperpalatable (e.g., high-fat, high sugar) ones, may possess addictive qualities. Stress is an important factor in the development of addiction and in addiction relapse,
and may contribute to an increased risk for obesity and other metabolic diseases. Uncontrollable stress changes eating patterns and the salience and consumption of hyperpalatable foods; over time, this could lead to changes in allostatic load and trigger neurobiological adaptations that promote increasingly compulsively behavior.
This association may be mediated by alterations in the hypothalamic-pituitary-adrenal (HPA) axis, glucose metabolism, insulin sensitivity, and other appetite-related hormones and hypothalamic neuropeptides. At a neurocircuitry level, chronic stress may affect the mesolimbic dopaminergic system and
other brain regions involved in stress/motivation circuits. Together, these may synergistically potentiate reward sensitivity, food preference, and the wanting and seeking of hyperpalatable foods, as well as induce metabolic changes that promote weight and body fat mass. Individual differences
in susceptibility to obesity and types of stressors may further moderate this process. Understanding the associations and interactions between stress, neurobiological adaptations, and obesity is important in the development of effective prevention and treatment strategies for obesity and related metabolic diseases.